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ABSTRACT

A permutation group G of finite degree d is called a sharp permutation
group of type {k}, k a non-negative integer, if every non-identity element
of G has k fixed points and |G| = d—k. We characterize sharp non-abelian
p-groups of type {k} for all k.

1. Introduction

Let G be a permutation group of finite degree d and let k be a non-negative
integer. G is called a permutation group of type {k} if every non-identity element
of G has k fixed points; a group of type {k} for some positive integer k is called
a group of finite type. G is called a sharp permutation group of type {k}
if it is a group of type {k} and |G| = d — k (see [3]). From the Orbit Counting
Lemma ([3, Theorem 2.2]) it follows that a permutation group of type {k} is
sharp if and only if it has exactly k + 1 orbits. For example, each non-trivial
permutation group with & global fixed points and one regular orbit is a sharp
permutation group of type {k}. Moreover, a sharp permutation group of type {k}
which has h < k global fixed points is isomorphic to a sharp permutation group of
type {k — h}. Therefore, to avoid trivialities we consider only sharp permutation
groups without global fixed points and regular orbits and we call them sharp
irredundant (permutation) groups of type {k}. Note that the absence of regular
orbits forces k to be positive.

Finite groups admitting a faithful representation as sharp irredundant per-
mutation groups of finite type have been investigated in [4] and [5]. A complete
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description is given, except for the case when G is a non-abelian p-group, in which
case only sharp irredundant non-abelian p-groups of type {p} are characterized.
In this paper we complete the classification of sharp irredundant non-abelian
p-groups of type {k} for all k. We prove the following result.

THEOREM 1: Let G be a finite non-abelian p-group. Then G has a faithful
representation as a sharp irredundant group of type {k}, for some k such that
p" < k < p"tl, if and only if it has the following properties:
(i) G/G' is an elementary abelian p-group of order p*";
(ii) there exists a subgroup N > G’ of index p" such that for each g € G\ N,
g has order p and |Cn(g)| = p";
(ili) for each g € G\ N there exists a complement Ay for N in G such that
g € Ay and:
(a) the elements of the set {A, | g € G} split into p" conjugacy classes;
(b) the set 7 = {A,G'/G"|g € G\ N}U{N/G'} is a partition of G/G'.

Recall that a partition of a group G is a set 7 of non-trivial subgroups of G
such that each non-identity element of G belongs to exactly one of them. The
elements of 7 are called components. 7 is non-trivial if each component is a
proper subgroup. 7 is normal if X9 € 7 for each X € 7, ¢ € G. For basic
concepts and results on groups with partition we refer to [8].

By Theorem 1 in [4] a necessary condition for a finite group to have a faithful
representation as a sharp irredundant group of finite type is to have a non-trivial
normal partition. Therefore, all groups considered in this paper are groups with
a non-trivial normal partition. Recall that a finite p-group G has a non-trivial
normal partition if and only if it has a proper normal subgroup N such that every
element outside N has order p (see [8]). When G is a finite non-abelian 2-group,
such an N, when it exists, has index 2 in G. Thus Theorem 8 in {4] implies that
a finite non-abelian 2-group has a faithful representation as a sharp irredundant
group of type {k} if and only if it is a dihedral 2-group and k = 2.

Further information on the structure of sharp irredundant non-abelian p-groups
of finite type, p > 2, are collected in the following theorem.

THEOREM 2: Let G be a sharp irredundant non-abelian p-group of finite type
{k} on aset Q, p> 2. Let |G : G'| = p? and let ¢ be the nilpotency class of G.
Then:
(i) 1i(G) 741 (G)| =p™ for all i =2,...,c—1 and |[7.(G)| < p™;
(ii) the lower central series and the upper central series of G coincide;
(iii) for every normal subgroup H of G there exists an index i such that
7i+1(G) < H < %(G);
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(iv) for every normal subgroup H of G such that H < G’', the quotient group
G/H acts on the set of the H-orbits of Q0 as an irredundant sharp group of

type {k}.

Note that condition (iii) in Theorem 2 says that G is a normally constrained
p-group (see [2]).

About possible values for k, it is immediate to see that when G is a sharp
p-group of type {k}, then p divides k. When G is non-abelian, if p = 2, as we
observed above, &k = 2; if p is odd, possible values for & are given by Theorem 2.

THEOREM 3: Let G be a finite non-abelian p-group, p > 2, and suppose that
G has a faithful representation as sharp irredundant group of type {k}. Let
|G : G'| = p?". Then k = p™ + |x| — 1, for some partition m of an elementary
abelian p-group of order p". Moreover, for each partition © of an elementary
abelian p-group of order p™*, G has a faithful representation as a sharp irredundant
group of type {p" + |r| — 1}.

In Section 5 we construct some examples of irredundant sharp non-abelian p-
groups of finite type. Moreover, we determine all non-abelian p-groups of order
at most p°, p > 2, with a faithful representation as an irredundant sharp permu-
tation group of finite type. Furthermore, we show that the values of k < p® for
which there exists an irredundant sharp non-abelian p-group of type {k}, p > 2.
are: p,p%.p? + p.p*p® + p%, 02 + p? + p.p? and p* + p + p? — (m — L)p, for
1<m<p?+1.

NoTaTION. Let Gbeagroup. If p;,¢ = 0,...,r are permutation representations
of G on some sets ;, we denote by > ;_, p; the permutation representation p of
G on the disjoint union §2 = Ul o$2; defined by the position wg? = wg? ifw € €2,
g € G. Moreover, we denote by px the standard permutation representation of
G on the right cosets of the subgroup X.

2. Some general properties

Let G he an irredundant group of type {k} on a set Q. By Theorem 1 in [4]
the non-trivial stabilizers of the subsets of £ of size k form a non-trivial normal
partition of G denoted by mq. If G is a p-group, then Z(G) # 1 and so, by
Lemma 3.5.4 in (8], any non-trivial normal partition of G contains at least one
component that is a normal subgroup of G.

LeMMA 4: Let G be a group with a non-trivial partition ™ such that every
component of 7 is a normal subgroup of G. Then G is abelian.
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Proof: If X and Y are distinct components of 7, then trivially [X,Y] < XNY =
1. Therefore, we need only show that each component is abelian. So let X € n,
z,y € X and choose z ¢ X. Then zz ¢ X and so [z,y] = 1 = [zx,y], thus
[z2,y] = [x,y] = 1 as claimed. |

PROPOSITION 5: Let G be a finite group acting faithfully as an irredundant
group of type {k} on a set Q. Let N be a normal component of o and let Z be
a central subgroup of G contained in N. Then G/Z acts faithfully as a group of
type {k} on the set Q/Z of the Z-orbits of Q. Moreover:
(i) if Z # N, then the action of G/Z on Q/Z is irredundant;
(ii) if G is sharp on Q and G is non-abelian, then G/Z is sharp with no regular
orbits on Q/Z;
(iii) if G is sharp on Q and either Z is properly contained in N or Z < ', then
G/Z acts on Q/Z as a sharp irredundant group of type {k}.

Proof: First of all note that any stabilizer in G of a point of Q either contains
N (and so Z), or intersects N (and so Z) trivially. Hence Z acts on each G-orbit
either trivially or semi-regularly. Moreover, by definition, N is the intersection
of the stabilizers of the points that are trivial Z-orbits.

Let us prove that Z is the kernel of the action of G on Q/Z. Clearly Z is
contained in the kernel. Conversely, let © € G act trivially on Q/Z. Then,
in particular, x fixes all the points of Q that are trivial Z-orbits; thus © € N.
On the other hand, x leaves invariant all the regular Z-orbits. Thus if w? is a
regular Z-orbit, then wx = wz for some z € Z, that is 227! € Stg(w). Thus
2271 € Stg(w)NN =1 and z € Z. Hence G/Z acts faithfully on Q/Z as claimed.

Let us prove now that every non-identity element of G/Z has k fixed points
on Q/Z. Let gZ € G/Z, g & Z, let T be the set of points of €) that are trivial
Z-orbits fixed by g and set |T'| = h. We need to show that the number of regular
Z-orbits fixed by ¢ is exactly k — h. A regular Z-orbit w? is fixed by ¢Z if and
only if wg = wz for some z € Z, that is w is fixed by some element # of gZ. In

Zisa regular Z-orbit, w

such a case, t acts trivially on w?. Moreover, since w
cannot be fixed by two distinct elements of gZ. Thus distinct elements of gZ
can act trivially only on distinct regular Z-orbits. Since any element of gZ has
k fixed points in © and acts trivially on T, it acts trivially on (k — h)/|Z| regular

Z-orbits. Hence the number of Z-orbits that are fixed by ¢Z is

k—h
h+ZV|—:h+(k—h):k,
2€Z
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as claimed.

Let us study now regular orbits and global fixed points in £2/Z. Suppose that
A/Z CQ/7 is a G/Z-regular orbit. Then, since GG does not have regular oibits
on 2 and Z acts on each G-orbit either trivially or semi-regularly, Z must act
trivially on A. Thus |A] = |A/Z| = |G/Z|. Hence Z is the stabilizer of every
point of A. In particular, Z = N. On the other hand, suppose that w? € Q/Z
is a global fixed point for G/Z. Then, since G does not have global fixed points
in Q, w? is a regular Z-orbit in Q2 and so Stg(w) N Z = 1. Moreover, Stg(w)
intersects non-trivially every coset of Z. Thus Stg(w)Z = G and, since Z is a
central subgroup of G, G' < Stg(w).

By the previous discussion about global fixed points and regular orbits in
Q/Z, (i) follows at once, since if Z # N, then no stabilizer of a point of Q2 is a
complement for Z in G.

To prove (ii) note that if G is sharp, then G/Z is sharp on Q/Z as well, since
G/Z is of type {k} and the number of orbits did not change. Thusif A/Z C Q/Z
is a regular orbit for G/Z, then since every non-identity element of G/Z moves
exactly |G/Z| points, all the points outside A/Z are global fixed points. Hence by
what we have seen above, Z = N is a point-stabilizer and every point-stabilizer
distinct from Z is a normal subgroup of G. So every component of the partition
7 is normal. Hence, by Lemma 4, G is abelian: a contradiction. This proves
(ii).

To prove (iii), note that if Z < N the result follows from (i) and from the fact
that G/Z is sharp on §2/Z, provided G is sharp on 2. If Z < &', then we may
assume G' # 1, otherwise Z = 1 and there is nothing to prove. Hence by (ii),
G/Z has no regular orbit. If it has a global fixed point w?, then G’ < Stg(w)
and Z = Z N St (w) = 1: a contradiction. So (iii) holds. |

Remark: Note that in the hypothesis of Proposition 5(iii), when Z is a proper
subgroup of N we have that N/Z is a normal component of 7 /z- In fact, let
A C 2 be the set of the k points fixed by N. Since Z < N, every point of A is
a trivial Z-orbit and so A/Z is a subset of Q/Z of size k. The stabilizer of A/Z
is N/Z.

LeMMA 6: Let G be an irredundant group of type {k} on a set Q and let N be
a component of mq. Then |Cn(g)| < k for each g ¢ N.

Proof: Let g ¢ N. Then there exists w € € such that Stg(w) "N =1and g €
Ste(w). Clearly wty # wty for every £ty € Cn(g), t1 # t2, and wtg = wgt = wi
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for every t € C'n(g). Since g has k fixed points in €2, it follows that |Cv(g)] < k.
|

3. Extra-special p-groups

In this section we consider the particular case of extra-special p-groups and p-
groups with derived subgroup of order p, for odd primes p. It is well known that
an extra-special p-group of exponent greater than p does not have a non-trivial
partition. Thus it cannot be faithfully represented as a sharp irredundant group
of finite type.

THEOREM 7: Let G be an extra-special p-group of order p*"*!, n > 1, p > 2,
and exponent p. Then G can be faithfully represented as a sharp irredundant
group of type {k} if and only if k = p" + h, where either h = 0 or {h} is the type
of a sharp irredundant elementary abelian p-group of order p™.

Moreover, if G acts on a set § as a sharp irredundant group of type {p" + h},
then T contains a unique normal component N which is an abelian group of
order p"*!, every point-stabilizer not containing N is an abelian complement of
N and every point-stabilizer containing N is either N itself when h = 0 or the
preimage, via the natural epimorphism of G onto G/N, of a point-stabilizer of a
faithful representation of G/N as a sharp irredundant group of type {h}.

Proof: Let G be an extra-special p-group of exponent p and order p?"*1, n > 1,
p > 2. The elementary abelian p-group V' = G/Z(G) may be regarded as a
symplectic space of dimension 2n over the field with p elements F, with respect
to the form f : V x V = F,, (2Z(G),yZ(G)) — [v,y]. It is well known that
there is an F,-isomorphism of the symplectic space W of dimension 2 over the
field with p” elements onto V', mapping totally isotropic subspaces into totally
isotropic subspaces. Thus the set of images of oue-dimensional subspaces of
W is a partition = of V' consisting of maximal totally isotropic subspaces. Let
Ao = N, Ay, ..., Ay be the full preimages of the elements of m with respect
to the natural projection of G onto V. Then any A; is an elementary abelian
p-group and A; N A; = Z(G) for each i # j. Fori = 1,...,p" let X; be a
complement of Z(G) in A;. Clearly No(X;) = A;, so that X; has p" conjugates.
Moreover, every conjugate of X; is a maximal subgroup of A; not containing
Z(G). Since A; has p™ +p™~! + .- -+ 1 maximal subgroups and those containing
Z(G) are p"~t+p"~2+---+1 in number, it follows that the conjugates of X; are
exactly the maximal subgroupé of A; not containing Z(G). Thus any element of
A; \ Z(G) is contained in p"~! conjugates of X;. Clearly X¢ N \’J” = 1 for all
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g,h € G,i+# j. Henceif g € A; \ Z(G), i # 0, then g?*: has p" fixed points,
while g%, j # 1, and ¢°V act fixed-point-freely. If 1 # g € N, then ¢V has
p" fixed points and ¢g°*: acts fixed-point-freely for every ¢ = 1,...,p". Hence
p=pN+ Z’,’; px, is a faithful representation of G as a sharp irredundant group
of type {p"}.

Ifo=3"", pa v is a faithful representa:tl,ion of G/N as a sharp irredundant
group of type {h}. then p= 3", par, + S_b_, px, is a faithful representation of
G of type {p" + h}. In fact, if 1 # g € N, then g”*: is the identity for every
i=1,...,m and ¢g”¥: acts fixed-point-freely. Hence g” has as many fixed points
as the degree of the representation o, that is |G/N|+ h=p" + h. If g ¢ N then
g € M; if and only if gN € M;/N. Thus, since A; is a normal subgroup of G,
g"™; has |G : M| fixed points if gN € M;/N and none otherwise. Therefore
gzy;1 #¥; has as many fixed points as the number of fixed points of {(g/N)?, that
is h. Hence g” has p™ + h fixed points, as claimed.

Now let p be a faithful representation of G as a sharp irredundant group of
type {k} on a set Q. Since |G'| = p, G’ acts on each orbit either trivially or
semi-regularly. Let O be an orbit on which G’ acts semi-regularly and let X be
the point-stabilizer of a point in O. By Proposition 5(iil), G/G' acts on /G as a
sharp irredundant group of type {k} and so, by the result in [5], the lengths of the
G /G -orbits on /G’ are the orders of the components of a non-trivial partition
of G/G’. Since |G/G’| = p?", the maximum of such orders is p". Clearly, O/G’
is a G/G'-orbit in Q/G’ of length |O|/p. Thus |O]/p < p" and |O] < p"*+1, that
is |X] > p". On the other hand, X is an abelian subgroup of G not containing
G’ and so it has order at most p". Hence |X| = p™, that is every orbit in Q on
which G’ acts semi-regularly has length p"*!. Since every non-identity element
of G moves exactly |G| points in 2, if @ denotes the number of orbits on which
G’ acts semi-regularly, we have that ap"*! = |G|, and so a = p™.

Now let N be the normal component of 7 containing G’. Since G/ = Z(G)
is contained in every non-trivial normal subgroup of G, it is clear that N is the
unique normal component of n. Moreover, since by definition of N, NNX =1
for each point-stabilizer X not containing G’, we have that |N| < p"*!. On
the other hand, every element outside N belongs to some point-stabilizer not
containing G’. Moreover, if X is a point-stabilizer not containing G’, then every
conjugate of X is contained in XG’. Therefore we nwst have |G\N| < |[XG'\G'|a.
that is p>"+! — |[N| < (p"*+! — p)p", whence |N| > p"*+1. Thus |N| = p+l.

Now we want to show that every element outside G’ fixes exactly p" points
in those orbits on which G’ acts semi-regularly. So let X be a point-stabilizer
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not containing G’. Then X G’ is an abelian subgroup of order p"+1. We claim
that XG' = Ng(X). In fact if Ng(X) > XG’, then there exists a subgroup H
such that X < H < Ng(X) and [H : X| =p?. Hence H < XNG' =1and H
is abelian: a contradiction since G does not contain abelian subgroups of order
p" 2. Thus XG' = Ng(X) and X has p” conjugates. The argument used in the
first part of the proof for detecting the conjugates of X; applies here and shows
that XG'\ G' = |J e X9\ {1}. Then by a counting argument it follows that
a non-identity element of X is contained in p"~! distinct conjugates of X and
cannot be contained in any point-stabilizer not containing G’ and non-conjugate
with X. Hence a non-identity element of X fixes exactly p” points in those orbits
on which G’ acts semi-regularly. Thus if N is a point-stabilizer, then k& = p™ and
we are done. If IV is not a point-stabilizer, let Sy,...,S5; be the point-stabilizers
containing N. If X is a point-stabilizer not containing G, then 7 = 2221 PXNS;
is a faithful representation of X as an irredundant group of type {k — p"} and
the number of orbits is t = k 4+ 1 — p™. Since XN = G the thesis follows. |

Remark: Let A be an elementary abelian p-group of order p™. Then by [5] every
faithful representation of A as a sharp irredundant group of type {h} is such that
there exists a partition 7 of A with h = |7| — 1. Since the maximum number of
components of a partition of A is (p™ — 1)/(p — 1), we have that h is at most
p"~ 1+ p"? + ... 4 p. Therefore from Theorem 7 it follows that if G is a sharp
irredundant extra-special p-group of order p*"*! and exponent p > 2 of type {k},
then p” <k <p"4p" '+ 4+ p <prtl

ProOPOSITION 8: Let p be an odd prime and let G be a finite p-group with
|G'| = p. If G has a faithful representation as a sharp irredundant group of finite
type, then G is an extra-special p-group of exponent p.

Proof: Let G be a finite p-group with [G'| = p and let us assume that G has a
faithful representation as a sharp irredundant group of finite type {k} on a set
). Then G has a non-trivial partition and so it is generated by elements of order
p. Since it has class 2, it has exponent p. Therefore, in order to prove that G
is an extra-special p-group of exponent p it is enough to show that Z(G) = G’.
In order to obtain a contradiction, suppose that Z(G) > G’ and choose G of
minimal order with this property.

Let Z be a central subgroup of order p, Z # G’. Then the component of 7o
containing Z is normal in G and so, by Proposition 5(ii), G/Z acts faithfully as
a sharp group of type {k} on the set of all Z-orbits /7, without regular orbits.
Hence it has a faithful representation as a sharp irredundant group of type {h},
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with 0 < h < k. Since [(G/Z)'| = p, the minimality of |G| implies that G/Z
is an extra-special p-group. Set |G/Z| = p*"*!, whence |G| = p***2. Then,
by Theorem 7, 2/Z contains at most p" + 1 (G/Z-orbits of length greater than
or equal to p*. Clearly, if X is a point-stabilizer not containing G’', then X is
abelian. So X Z/Z is an abelian subgroup of the extra-special p-group G/Z, and
thus must satisfy |XZ/Z| < p"*! and |XZ/Z| < p™ if further G'Z/Z £ XZ/Z.
Now if X N Z = 1, then clearly we have that |X| < p"*l. If X > Z, then
G'Z]Z £ XZ/Z, since G' £ X. Thus in both cases, |[X| < p"*!. Hence the
orbits on which G’ acts semi-regularly have length at least p"+!.

By Proposition 5, G/G’ acts on /G’ as a sharp irredundant group of type
{k}. By the result in [5] the lengths of the orbits of a sharp irredundant abelian
group correspond to the sizes of the components of a non-trivial partition of the
group itself. Therefore, since |G/G'| = p?"*!, we have that G/G’ may have at
most only one orbit on /G’ of length greater than p™+!. Therefore, among the
G-orbits on which G’ acts semi-regularly, at most only one of them has length

p"*?2 and all the others have length p"+1.

Let a be the number of orbits of length pn*!

on which G' acts semi-regularly.
Then, since every non-identity element of G moves exactly |G| points, by counting
the points moved by a non-identity element of G', we have that ap"t! + pn+? >
p*"*2, whence a > p™*! — p. Thus we have that G/Z acts on /7 with at least

p"*t! — p orbits of length at least p™: a contradiction. |

4. Proofs of the main results

In this section we prove Theorem 1, Theorem 2 and Theorem 3.

Proof of Theorem 1: Let G be a finite non-abelian p-group. First we prove that if
G satisfies conditions (i)—(iii) in Theorem 1, then G has a faithful representation
as a sharp irredundant group of type {p™}. Namely, we claim that if X is a set of
representatives for the conjugacy classes of the subgroups 4,4, g € G\ N, defined
in (iii), then p = py + > ycr px is a faithful representation of G' as a sharp
irredundant group of type {p"}.

It is immediate that p is faithful and irredundant. Moreover, |X| = p® by
condition (iii.a); so the number of orbits of p is p™ + 1. Hence we need only prove
that p is of type {p"}. First note that f X, Y € Y and X # Y, then XNY* =1
for all @ € G. In fact, if we suppose that X N Y? # 1 for some a € G, then
XG'NYG > G and so XG' = Y@, since by (iii.h), XG'/G' and YG'/G’' are
components of the partition m of G/G’. Then 7 has at most p” components. each
one of order p™: a contradiction since G/G’ has order p*".
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Now let g € G\ N and let X € X be such that g belongs to a conjugate of
X. Actually, there is no loss of generality in assuming ¢ € X. By the previous
observation ¢° acts fixed-point-freely on the right cosets of N and of Y, for
X #Y € X. Therefore, the number of fixed points of g” is equal to the number
of the elements @ € N such that Xag = Xa, or equivalently ¢ € X N X% Now
g € XNX%if and only if [g,a] € X*NG' = 1, that is @ € Cn(g). Thus the
number of fixed points of g” is |Cn(g)] = p", by (ii). Trivially, if 1 # g € N,
then g# acts trivially on the right cosets of N and with no fixed points on the
right cosets of X, for X € X. Therefore p is of type {p"}, as desired.

Now suppose that G has a faithful representation as a sharp irredundant group
of type {k} on a set §, with p® < k < p"*!. If p = 2, then G has exponent greater
than 2 since it is non-abelian and thus, by a result of Hughes [6], |G : H2(G)| = 2,
where H3(G) is the Hughes subgroup of G (that is the subgroup generated by
elements of order greater than 2). Then the result follows from Theorem 8 in [4].
So for the remainder of the proof we assume p > 2. We prove that mq contains
a unique normal component and G satisfies conditions (i)-(iii}, where N is the
normal component of mq and the set of the complements A, for N in G is the set
of all point-stabilizers not containing N. If |G’ = p, then by Proposition 8, G
is an extra-special p-group and so by Theorem 7 we can conclude. In particular,
we are done when |G| = p®. Hence we may assume that |G| > p?, |G| > p and
that the claim is true for groups of order smaller than |G|. The proof is divided
into many steps.

(a) G/G" is an elementary abelian p-group of order p?".

Let M be a maximal subgroup of G’, normal in G. Then repeated applications
of Proposition 5(iii) yield that G/M is a sharp irredundant group of type {k},
with derived subgroup of order p. So by Proposition 8 it is an extra-special p-
group. Hence from Theorem 7 it follows that (G/M)}/(G'/M) is an elementary
abelian p-group of order p*" and so the same holds for G/G’.

(b) 7q contains a unique normal component N > G’ such that |G : N| = p™ and
every point-stabilizer not containing N is a complement for N in G.

Let Z be a subgroup of order p of G' N Z(G) and let N be a component of
7 containing Z. Then N is a normal subgroup of G. Set G/Z = G and for
cach subgroup R of G denote R = RZ/Z. By Proposition 5(iii), G is a sharp
irredundant p-group of type {k} on the set I' = §2/7Z of Z-arbits of 2. Moreover,
since |G'| > p, G is non-abelian. Then by the inductive hypothesis the claim
holds for G. Let M be the unique normal component of 7p. If N # 1, then
by the Remark after Proposition 5, N is a normal component of 7. Thus the
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uniqueness of A7 implies that either N = 1 or M = N. If N = 1, then there exists
a point-stabilizer H in G containing N such that H N M = 1. Since the claim
holds for G, H is abelian of order p”. On the other hand, since any non-identity
element of NV fixes by right multiplication all the cosets of H, |G : H| < k < p"T!.
Thus |G| < p*". Tt follows that G is abelian since |G : G| = p™ by (a). A
contradiction. Therefore A = N and so N is the unique normal component of
Tq. Moreover, |G : N| = |G: N
N, then X is a point-stabilizer in G not containing N and so it is a complement

= p". If X is a point-stabilizer not containing

for N in G. Hence X is a complement for N in G, as claimed.
{(¢) For each g € G\ N, |Cn{(g)} = p"™.

Let G be as in the proof of (b). Let g € G\ N. By Lemina 6. |Cn(g)| < k and
s0 |C'n(g)] < p". On the other hand, p" = |Cx(g)| by the inductive hypothesis,
and by a result of Khukhro ([7, Theorem 1.6.1]) |Cx(g)| < |Cn(g)|. Hence
|Cn(g)] = p".

(d) G has a faithful representation as an irredundant sharp group of type {p™}.

If & = p™ there is nothing to prove. So suppose that & # p". To produce a
faithful representation of G as irredundant sharp group of type {p"} we want
to replace the orbits on which N acts trivially with a single orbit on which G
acts as on the right cosets of N by right multiplication. It is trivial that this
procedure produce a faithful representation of G with p” + 1 orbits, in which
every non-identity element of N has p™ fixed points. Thus, we need only prove
that in the new representation also the elements outside N have p” fixed points.
Solet g € N and let X be a point-stabilizer containing g and not containing N.
By (c), |Cn(g)] = p™ and so g fixes at least p™ points in the orbit w®”, where
St (w) = X. Since XNN = 1, w® is a regular N-orbit. To complete the proof we
show that g fixes k —p™ points in those orbits of {2 on which N acts trivially. Let
M be a maximal subgroup of G’, normal in G. Then as in the proof of (a), G/M
is an extra-special p-group of order p?"+1 acting as a sharp irredundant group of
type {k} on the set /AT of all A -orbits of Q2. By Theorem 7, gM € G/M\ N/M
fixes k — p" points in those G/M-orbits on which N/M acts trivially. So g fixes
k — p" points in those G-orbits of Q on which N acts trivially.

(e} The set m# = {XG'/G'|X is a point-stabilizer not containing N} U {N/G'} is
a partition of G/G’.

By (d) we may assume that k& = p™. By Proposition 5(iii}, G/G’ acts on the
set of all G’-orbits as a sharp irredundant group of type {p”} and so every point-
stabilizer is a component of a partition. Since the point-stabilizers in the action
of G/G’ on G'-orbits are of the form XG'/G’ where X is the stahilizer of a point
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of Q not containing N, or N/G’, the claim follows.

To conclude the proof of the theorem it is enough to observe that the number
of conjugacy classes of the point-stabilizers not containing N equals the number
of G-orbits on which N acts non-trivially. Since by (d) we may assume k = p”,
this number equals p™ and the claim follows. ]

Proof of Theorem 2: Let G be a sharp irredundant non-abelian p-group, p > 2,
of type {k} on a set Q. Let c be the class of G and let |G : G'| = p*™. Let N be
the normal component of rq. Then by point (d) in the proof of Theorem 1 we
may assume that £ = p". Since 7.(G) < Z{G)N N, from Lemma 6 it follows at
once that |v.(G)| < p". To show the remaining part of claim (i} we prove first
that

(x) 4f X is a point-stabilizer not containing N, then XG' acts on a subset of
Q as a sharp irredundant group of type {p"}.

Let Y be a point-stabilizer not containing N, ¥ # X, and suppose that XG'N
Y # 1. Then XG'NYG' > G' and, from point (e) in the proof of Theorem 1,
it follows XG' = YG’, that is Y < XG'. Moreover, Y is a conjugate of X,
since each conjugacy class of point-stabilizers of G determines a component of
the partition 7 = {XG'/G'|X is a point-stabilizer not containing N} U {N/G'}.
Thus XG’ acts regularly on all but one of the G-orbits of € on which N acts
non-trivially. Namely, XG’ acts non-regularly on that G-orbit of 2 whose point-
stabilizers are conjugates of X. On that G-orbit, XG' acts with p" orbits of
length | XG' : X| = |G : X|/p™. Since each G-orbit on which N acts trivially is
also a non-regular X G’-orbit, we have that XG' has exactly p" + 1 non-regular
orbits. Hence it acts as a sharp irredundant group of type {p™} on the union of
those orbits.

Let us now prove that

(%) for each i = 2,....c = 1, |%(G) : vi+1(G)| = p" and v (G) =
Yit1—j (X 7j+1(G)) for every point-stabilizer X not containing N and for every
positive integer j < <.

Let us fix an ¢ and suppose that we have already proved the claim for every
h < i. In particular, we have that 7,41(G) = ¥2(X(G)) for every point-
stabilizer X not containing N and for every positive integer h < i. Hence from
(*) it follows that Xv;(G) is a sharp irredundant group of type {p"} for each
point-stabilizer X not containing N. Let L be a maximal subgroup of v;+1(G)
containing v;42(G). Since v;(G)/L is not central in G and G is generated by
the elements not contained in N, it follows that there exists a point-stabilizer Y
not containing N such that Y £ Cs(v;(G)/L). Hence Y;(G)/L is non-abelian.
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Since clearly v2(Y7;(G)) < 7i11(G), it must be vo(Yy;(G)/L) = vi4+1(G)/L. Re-
peated applications of Proposition 5(iii) yield that ¥ v;(G)/L is a sharp irredun-
dant group of type {p"}. Then, by Proposition 8, ¥v;(G)/L is an extra-special
p-group, whence p** = |Y;(G)/L : 72(Yv(G)/L)| = [Y%(G) : vi+1(G)|. By
Theorem 1(ii) we have that |Y;(G) : 1:(G)| = p" and so |y,(G) : vi41(G)| = p"
as claimed. Now note that from Theorem 1(ii) and from a theorem by Khukhro [7,
Theorem 1.6.1], it follows that no point-stabilizer not containing N central-
izes v;(G)/L, since |v;(G)/L| = p"*1. Therefore, every point-stabilizer X not
containing N can be taken in the place of the subgroup Y above and so we
have that 7;41(G) = 72(X7(G)) for every point-stabilizer X not containing
N. Since, by assumption, for j < i we have v;(G) = 7vi_;(Xv;+1(G)), it
follows that vi+1(G) = 72(X7(G)) < 7i—j+1(X7j4+1(G)) £ 7i+1(G), whence
Yi+1(G) = vi—j+1(X7j4+1(G)) as claimed.

In order to prove that the lower central series and the upper central series
of G coincide, let L be a maximal subgroup of 7.(G) and let X be a point-
stabilizer not containing N. By the same argument used to prove (*x) we have
that Xv.(G)/L is an extra-special p-group. It follows that v.(G) = Z(G). Thus
if c = 2 we are done. If ¢ > 2, then by Proposition 5(iii), G/Z(G) is a non-abelian
sharp irredundant. p-group of finite type and the claim follows inunediately by
induction.

In order to prove (iii), let H be a normal subgroup of G, H < G'. By point
(i), H N v.(G) = HN Z(G) # 1. By Proposition 5(iii), G = G/H N 7.(G) is
a sharp irredundant p-group of finite type. Then by inductive hypothesis there
exists an index ¢ such that 7,(G) < H < v;41(G). Hence v;(G) < H < v41(G),
as stated.

Point (iv) is an immediate consequence of (iii} and Proposition 5(iii). 1

Proof of Theorem 3: Let G be a finite non-abelian p-group, p > 2, with a
faithful representation as a sharp irredundant group of type {k} on a set Q.
Let |G : G'| = p?". Let M be a maximal subgroup of G’, normal in G. Then
by Proposition 5(iii), G/M has a faithful representation as a sharp irredundant
group of type {k}. So by Proposition 8 it is an extra-special p-group of order
p2n+1

p-group of order p™ by Theorem 7 and the Remark after Theorem 7.

. Thus & = p" + |7] — 1 for some partition 7 of an elementary abelian

Conversely, let 7 be a partition of an elementary abelian p-group of order p*".
Since Theorem 1 holds for G, the proof of the reverse implication of that theorem
shows that G has a faithful representation as a sharp irredundant group of type
{p™}. Then the argument used in the proof of Theorem 7 to show that an extra-
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special p-group of exponent p and order p?"+!

has a faithful representation as a
sharp irredundant group of type {p" + |7| — 1} applies here and we get that G
has a faithful representation as sharp irredundant group of type {p" + |x| — 1}.

5. Examples

Example 1: For each odd prime p and positive integers m,n with n < p, there
exists a metabelian p-group of exponent p, order ¢"*!, where ¢ = p™, and class
n, which has a faithful representation as a sharp irredundant group of type {¢}.

Proof: Let p,m,n,q be as in the statement. Let F be a field of order ¢, F,, its
prime subfield and set V' = F".

In the ring M (n, q) of all square matrices of degree n with coefficients in F, we
denote by I the identity matrix and by J;, ¢ = 2,...,n the matrix with 1 on the
(¢ — 1)th lower diagonal and 0 elsewhere. Then JZ = Jy;_; for i < (n+1)/2 and
J?=0fori>(n+1)/2. Let ay,...,am be Fy-linearly independent elements of
F and define A; = I +a;Ja € M(n,q), i =1,....m, and H = {4;,...,4n) <
GL(n,q). For each 1 < i,j < m we have that A;A; = A;4;; moreover, 4; has
order p. Hence H is an elementary abelian p-group of order p™ = q.

Consider the usual action of H on V by right multiplication of row vectors,
which we denote, using the exponential notation, by v? for each v € V and
B € H. Define G to be the semidirect product V x H with respect to this action.

It is easy to check that, for k =2,...,n+1,

Y (G) = {(vsy...,vp) EV]gy=0fori=n—-k+2,...,n}

and so G has nilpotency class n. Since n < p, G is a regular p-group and so,
being generated by elements of order p, it has exponent p.

We claim that Cy(g) = Z(G) for each g € G\ V. Trivially, we have only to
show that Cy (g) C Z(G). Let g € G\ V. Then g = A{* --- A% u, whereu € V,
a; € F, and they are not all zero. Now A{'--- 4% = I + 57, b,J;, where
b; € F and by = aiar + -+ - + aypnttry. Thus by # 0, since the a; are Fy-linearly
independent. If v = (vy,...,v,) € Cy(g), then we have

n n—k+1
0= [V,g] = (Zbll}“ vy Z biUi+k—1v ey bz’vn, O) .
i=2 i=2

Therefore Z;:;H bivipp_1 =0foreach k =1,...,n—1. Since b # 0, it follows

that v; = 0 for each i = 2,...,n, whence v € Z(G) as claimed.
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Let w = (0,1,...,1) € V and for each x € F, i = 1,...,m, define w’ =
ay'a;zw. Moreover, set H, = (Aywl...., 4, w?) < G. It is straightforward
to verify that, for each » € F, H, is an elementary abelian p-group of order
g and H, NV = 1. Moreover, we claim that, for every v,y € F, g € G,
condition H, N HY # 1 implies v = y and g € Ng(H.). To see this let
(Arw})o - (Apw)rm = [(Aywy)? - (4 w])Pm ]9 be a non-trivial element
in H, N HJ. where, since G = VH,, we may take g € I". Then we have that

AS A% = AT AP mod V

m m

whence o; = 3; for each i = 1,...,m. Thus we have that
(AwWh)® - (A w)r = [(Awh)® - (4w ] mod G

whence we get the following relation, which we write in additive notation since
it involves only elements of 17

awi+ -+ W = alw; +-Fapwy modG’

and so
_ —1 _ — _
(aya] Yor +--+ Q] G t)W = (0ga] Yy +---+ Qo ] Yeny)w  moddG.

Thus, since w ¢ G’, we have that a;(v — y)ay + -+ + ap(x — y)a, = 0 in F.
Since a; are Fy-linearly independent and a,v are not all zero, we get that x = y.
Therefore g centralizes the element (A;wl)®t...(4,,w?)% & V and so, by
what we proved above, g € Z(G). Thus g € Ng (Hm) = Z(G)H,.

Now for each @ € F, H, has |G : Ng(H,.)| = ¢"~! conjugates. Therefore

vu [ H!

2€F,geG

=¢"+4¢¢" (g -1 =¢"* = |G|,

Hence 7 = {V} U {H¢|x € F,g € G} is a normal partition of G such that
[Ne(X) : X| = ¢ for each X € n. Furthermore, its components split into g + 1
conjugacy classes. Therefore, by Theorem 1 in [4], G has a faithful representation
as a sharp irredundant group of type {¢}. [ |

Example 2: For each odd prime p and positive integers I, m,n, with | a divisor
of m and n < p, there exists a metabelian p-group of exponent p, order p™»+"H
and class n, which has a faithful representation as a sharp irredundant group of

type {Z:’;/II ‘ri}, where r = pl.
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Proof:  Let G be the group of Example 1 and let us use the same notation.
Regard G/V as a vector space of degree m/l over a field with r = p! elements
F, and let © be the partition of G/V cousisting of all subspaces of dimension
1. Then |7| = 1+ 7 + - -+ + r™/'=1. Therefore, by Theorem 3, G has a faithful

representation as a sharp irredundant group of type {Z:;/ll ri}. ]

Using Proposition 5, other examples can be constructed as quotients of the
groups given in the previous examples.

We apply now the results of Theorem 1 and Theorem 2 to determine all irredun-
dant sharp non-abelian p-groups of order at most p°, p > 3. For the classification
of p-groups of maximal class and order at most p® we refer to [1].

Example 3: A non-abelian p-group G of order at most p®, p > 3, can be faithfully
represented as an irredundant sharp group of finite type if and only if it is one
of the following:

(i) an extra-special p-group of order p3 or p® and exponent p;

(i) G1 = {a,b,¢,d|[b,a] = ¢,[c,a] = d,[d,a] = [b,c] = [b,d] = [e,d] = 1,
a? = b = ¢ = dP = 1), where p > 3;
(iii) G2 = {(a,b,¢,d|[b,a] = ¢,[c,a] = d,[d,a] = [b,¢] = [b,d] = [¢,d] = 1,

B=dlad=c=d=1)

(iv) Gs = (a,b,c,d,e|[b,a] = ¢,[c,a] = d,[d,a] = e,[b.c] = e,[b,d] = [b,e] =
[e,d] =[c,e] =[d,e] =1,aP = bP = P = dP = eP = 1), where p > 3;

(v) G4 = (a,b,e,d.e|[b,a] = ¢,[c,a] = d,[d,a] = e, [b,c] = [b,d] = [b€]
e,d]=[c,e] =[de]=1,a3=a®=e> = 1,03 =dle,c3 =e71).

Proof: First of all we show that the groups in (i)-(v) have a faithful represen-
tation as irredundant sharp groups of finite type. In the case of extra-special
p-groups of exponent p, it follows from Theorem 7. If G is one of the groups in
(ii)-(v), then it has maximal class and so it satisfies the conditions of Theorem 1
provided that, for every element g outside N = C¢(Z2(G)), ¢ has order p and
Cn(g) = Z(G). In any case, an easy calculation shows that Cn(g) = Z(G) for
every element g € N. Moreover, if G is as in (ii) or (iv), then it is a regular
p-group and, since it is generated by elements of order p, it has exponent p. If G
is a 3-group as in (iii) or (v), then a acts on N as a splitting automorphism of
order 3, that is zz%z® =1 for each x € N. Hence, by a well known fact about
splitting automorphisms (see [4, p. 824]), every element outside N has order 3.

Let now G be an irredundant sharp non-abelian p-group of finite type and
order at most p®, p > 3. If |G| = p3, then G is an extra-special p-group of
exponent p.
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Let |G| = p*. Then by Theorem 1, |G : G’| = p? and by Theorem 2(ii), G has
class 3. By a result by Blackburn [1, p. 88] any group of order p? and class 3 has
the presentation

G = (a,b,c,d|[b,a] = ¢,[c,a] = d,[d,a] = [b,¢] = [b,d] = [¢c,d] = 1,

a? = d°, ) = d',c?=d? =1)

where § and v are suitable integers.

By Theorem 1(ii), the normal component N must coincide with Cg(72(G))
and every element outside N has order p. If p > 3, then G is a regular p-group
and, since it has a non-trivial partition, it must have exponent p. Hence we must
have § = v = 0. Thus G is the group G;. If p = 3, then the presentation of G
becomes

G = (a,b,c,d|[b,a) = c,[c,a) = d,[d,a] = [b,c] = [b,d] = [¢,d] = 1,
A= d=d,F=d*=1).
Then N = (b,c,d) and (ab)® = d". Since every element outside N must have
order 3, we must have § = v = 0. Thus G is the group Gs.

Let |G| = p°. By Theorem 1, |G : G'| = p?, or p*. If |G : G’| = p*, then
|G'| = p and so, by Proposition 8, G is the extra-special group of order p> and
exponent p. So let us assume |G : G’| = p?>. Then by Theorem 2, G has class 4
and, by Theorem 1, the subgroup N coincides with Cg{v3(G)) and every element
outside N has order p.

If p > 3, then by [1, p. 88], G has the presentation

G = {a,b,c,d,e|[b,a]l = ¢,[c,a] = d,[d,a] = e,[b,c] = e, [b,d] = [b,e] =1,
a,p = 66’ bpc(g)d(g)e(g) - e’)” (‘p([(g).j(g) = ]_7 dpe(g) = 1. (11) = 1>
where v,  are suitable integers. Since p > 3, GG is a regular p-group, and since it

has a non-trivial partition it must have exponent p. Hence the previous presen-
tation becomes

G = (a,b,c,d.e|b,a] = ¢,[c,a] = d,[d,a] = e,[b,c] = e,[b,d] = [b,e] = 1,
A== =dP=e’=1),
that is G is the group Gs.
If p = 3, then by [1, p. 88], G has the presentation
G = (a,b,c,d,e|b,a] = ¢,[c,a] = d,[d,a] = e, [b,c] = €, [b,d] = [b,e] = 1,

a® =l Bd=e,Pde =1,d%% =1,d° = 1)
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where either 3=1,7v=0,0=0,1,20r f=6=0,y=1or 8=~v=0,0 =0,1.
In any case N = (b,c,d,e) and (ab)® = e#+7*9. Since a and ab must have
order 3, it must be 5 =+ = 4§ = 0. Hence G is the group Gy4. |

Let us now determine all values of k < p® such that there exists an irredundant
sharp non-abelian p-group of type {k}. According to Theorem 3 we need to know
the cardinalities of all non-trivial partitions of elementary abelian p-groups of
order at most p*.

Let A be an elementary abelian p-group of order p", n > 2.

If n = 2, then the set of all subgroups of order p is the only non-trivial partition
of A. Tt has cardinality p + 1.

Let n = 3. The cardinalities of non-trivial partitions of A are:

p? + p+ 1, if the partition consists of subgroups of order p;
p? + 1, if the partition contains a subgroup of order p?.

Let n = 4. The cardinalities of non-trivial partitions of A are:

p3 4+ p? + p+ 1, if the partition consists of subgroups of order p;

p + 1, if the partition contains a subgroup of order p3;

pP+p?—(m—1)p+1, for 1 <m < p?+1, if the partition consists of m subgroups
of order p? (which are one-dimensional subspaces of A regarded as a vector space
of dimension 2 over the field with p? elements) and (p+1)(1+p? —m) subgroups
of order p.

Hence possible values for k are: p,p? p? + p,p%,p° + p%,p% + p* + p,p* and
p*+p> 4+ p* — (m—1)p, for 1 < m < p? + 1. Example 1 and Theorem 3 assure
that for each such number & there is an irredundant sharp non-abelian p-group
of type {k}.
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